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THE MODIFIED NEWTON METHOD IN THE SOLUTION 
OF STIFF ORDINARY DIFFERENTIAL EQUATIONS 

ROGER ALEXANDER 

ABSTRACT. This paper presents an analysis of the modified Newton method as 
it is used in codes implementing implicit formulae for integrating stiff ordinary 
differential equations. We prove that near a smooth solution of the differential 
system, when the Jacobian is essentially negative dominant and slowly varying, 
the modified Newton iteration is contractive, converging to the locally unique 
solution-whose existence is hereby demonstrated-of the implicit equations. 
This analysis eliminates several common restrictive or unrealistic assumptions, 
and provides insight for the design of robust codes. 

1. BACKGROUND, RESULTS, SIGNIFICANCE 

1.1. Prototype stiff problems. Their salient properties. Note the structure o 
the solution of the model differential equation 

(1.1) y' =Ay+cost, A< -1, 

namely, 

y(t) = eit (y(0) + 2) + 1 2 (sin t - A cos t). 

There is an initial transient of duration O(JA 1 l log JI)), after which the tern 
eit is not active and the solution is as smooth as cos t. 

Under suitable conditions, see [29] and infra, solutions of the stiff time 
varying linear system 

/ ~~~~~N 
(1.2) y =B(t)y + g(t), y E R 
have the same structure: y(t) is the sum of a smooth particular solution y,(t' 
and a transient v(t). The transient, a solution of the homogeneous equation 

v (t) = B(t)v(t), v(O) = Y(O) - (0) 

expires after a short time. Meanwhile, ys(t) and its derivative have bounds 
expressible in terms of 

1 dvB - dvg 
(1.3) B t)W B (t) v=O,)1. 

_ _ _ _ _ _ _ _ ~ ~~~~~~dtv 
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FIGURE 1 

Van der Pol equation, e = 0.01 

No new transient appears so long as the quantities (1.3) are of moderate size. 
In this work we show that the conditions responsible for this structure of 

solutions make possible the strategies embodied in codes for stiff problems. We 
consider one more example. 

The solutions of a nonlinear stiff system may be smooth for only a limited 
time. Take Van der Pol's equation 

2 
du (2 _ du 
d2 ( - )T +u = O Y > 1. 

Scale the independent variable by T = t/V/,, e = Y2, and make the change of 
variables 

X=u, y=eu+Iu3 -,u =d/dt, 

to arrive at the singularly perturbed (Lienard) form 

(1.4) k = y-( X3 -X) 2=-X. 

Figure 1 displays the familiar approach to the limit cycle [31]. The trajectory 
originating at S undergoes an initial transient, moving rapidly to the right 
branch ANK of the cubic. The solution is smooth as it moves down the cubic, 
but this smooth phase endures only until the neighborhood of the knee of the 
cubic at K is reached. Then the solution "jumps" rapidly to the left branch of 
the cubic at B. These alternating smooth segments and jumps are characteristic 
of relaxation oscillators. 

We now consider numerical methods. Stiff differential equations pose a fun- 
damental problem: how to compute smooth solutions efficiently. But a smooth 
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solution need not remain smooth, and in a robust code for stiff systems care 
will be taken that shortcuts adopted for efficiency's sake are justified. 

1.2. The modified Newton method. Let the stiff problem be 

(1.5) y =f(t, ), f: R x R , ,N f E CP+ P> 1 

and suppose that a smooth phase of the solution has been reached. Integrating 
(1.5) with a stable implicit formula, one must solve at each time step one or 
more systems of equations of the form 

(1.6) y= ,g+ahf(t,y) 

for a vector y E IRN . Here, h is the step size, a > 0 is a constant determined 
by the numerical method, t is a value of the independent variable, and yi 

is a known vector. The equations arising from general implicit Runge-Kutta 
methods also have essentially this structure, as we discuss later on. 

Functional iteration in (1.6) will not converge, so one resorts to a modification 
of Newton's method. The residual in (1.6) is 

(1.7) G(VI, y) := y + ahf (t, y) - y. 

For an iteration matrix one takes 

(1.8) M=I-aaohoJo 

JO being the Jacobian (0filJ0y), or a divided difference approximation to it, 
at some point (to) yo) in the past. Note that a0, ho in (1.8) may differ from 
a, h in (1.6). From an initial guess y0 for the solution of (1.6) a sequence of 
iterates is generated by 

(1.9) Ym+l =ym +MlG(y, ym), m = 0, 1, 2,. 

Because it is expensive to evaluate Jacobian matrices and factor them, the LU 
decomposition of M is formed and then retained for several steps, possibly 
even through changes in step size, so long as convergence is satisfactory. 

Is there convergence? 
There is some relief in knowing that y 0is ordinarily a good approximate 

solution of (1.6). Remember that we are computing a smooth trajectory, so that 
extrapolation from the solution history is justified. Hence we are not trying to 
achieve global convergence from a possibly poor initial guess. We expect (1.9) 
to terminate after just a few iterations with an acceptable solution. Indeed, it is 
good practice [37] to insist that (1.9) be contracting, not merely asymptotically 
convergent, even with a Jacobian that is considerably out of date. 

In the present work we show that the algorithm in (1.9) is justified near a 
smooth trajectory of a stiff problem. We prove that in a suitable neighborhood 
of a smooth solution of (1.5)-its size not restricted by stiffness-the iteration 

(1.9) is contracting. Any yo in that neighborhood generates a sequence con- 
vergent to a locally unique fixed point, a solution of (1.6) whose existence is 
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demonstrated by our analysis. This is the theoretical support for the strategy 
embodied in (1.9). From the analysis itself we shall see how better to make 
crucial decisions-e.g., whether in a case of too slow convergence to update the 
iteration matrix or to abandon the step. Moreover, we shall derive error esti- 
mates that provide a robust basis for stopping the iteration and accepting an 
approximate solution. 

Our analysis also applies to Runge-Kutta methods, which we now describe. 
A q-stage Runge-Kutta formula is characterized by coefficient arrays (c, A, b), 
A E Rjqxq, c, b E Rq. To advance the approximate solution of (1.5) from 
(t, Yn) to (t + h, Yn+1), one must solve the system of equations 

q 
(1.10) ~Yn, i =Yn Laijhf(t +hcj i n,;), i12.,q 

j=1 

for the Yn, i; then the solution is advanced by the quadrature formula 

q 
(1.11) ~~Yn+l = Yn +bihf(t+hci9 Yn d) 

i=1 

Now (1.6) to (1.9) are modified as follows. Consider first the case of invertible 
A. Refer to the equation ( 1.10) and put 

{Yn, 1 f(t +hc, c Yn, 1) 
(1.12) Y:= , F(Y):= . 

Yn' q f(t+hcqg Ynq) 

Finally, with e:= (1, ..., 1)T E s let 

(1.13) vT:= e (9 Yn. 

Then (1. 10) takes the form 

(1.6a) Y= T+(AGIN)hF(Y). 

(We designate the v x v identity matrix by I,, omitting the subscript when 
the context dictates its value.) The residual is 

(1.7a) G(TP, Y) := v + (A X I)hF(Y) - Y. 

Take for the iteration matrix 

(1.8a) M:= Iq ?IN -A hoJo; 

Then the iteration (1.9) is replaced by 

(1.9a) ym+l ym+ M-G(T Iym) m = 0, 1, 2. 

As written, (1 .9a) entails the solution of an Nq x Nq linear system at every 
iteration, but substantial simplifications are possible. If A is lower triangular 
with equal diagonal entries Aii = a , then M in (1 .8a) is block lower triangular, 
and each diagonal block is the M of (1.8). A general matrix A can be brought 
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to triangular or other simple form by a similarity transformation, greatly re- 
ducing the operation count in solving linear systems with coefficient matrix M 
[45]. Formulas in which A has a single (positive) real eigenvalue have received 
major attention, see [2, 7, 3] and works cited therein. More recently, in [28] it is 
shown that on a parallel computer there is a significant advantage for formulas 
with distinct eigenvalues, i.e., diagonalizable A. 

We have to modify the description (1.6a)-(1.9a) if A is not invertible. In- 
stead of seeking the most generality, we consider here only the important class 
of formulas of special type ("Schemas particuliers de Runge-Kutta" [7]): 

(1.14a) the first quadrature node is 0, and the first row of A is oT; 
T 

(1.14b) the last quadrature node is 1, and the last row of A is b 
(1.14c) the matrix derived from A by deleting the first column has linearly 

independent columns. 
The Lobatto III A formulas (including the trapezoid rule) are among this class. 
A-stable diagonally implicit formulas of special type were first systematically 
studied by R. Alt in his 1973 Paris thesis, reported in [1, 7]. Recently, J. C. 
Butcher has renewed interest in formulas of special type [3]. 

If the formula is of special type, let us assign the index i = 0 to the first 
stage, and write the coefficient arrays as (c, A, b), with c, b E RO q] A E 

q]x[*;q] . We also write a0 = a a2 ***a. )T E q for the last q entries 

in the zeroth column of A. Since the first row of A is 0 E '0 q]R equation 
(1. 10) with i = 0 is just 

Yn, = Yn. 

Thus, if we write A for the lower right q x q submatrix of A and define Y 
and F(Y) as in (1. 12), then equation (1. 10) becomes 

Y = e (y Yn + ao ($ hf (t, Yn) + (A X I)hF(Y), 
arid this is in the form (1.6a) with an invertible A if we let 

( 1. 1 3a) T := e (8& Yn + ao (8& hf (t, Yn) n 

We used only the properties (1.14a); (1.14c) of a formula of special type: 
(1.14b) was not needed. So already we can handle a wider class with singular 
A . It is easy to see in general that if A is singular then some Yn, i in (1. 10) can 
be expressed in terms of Yn and the other Yn, i , that is, to a zero eigenvalue of 
A there corresponds an explicit stage. Eliminating it leads to a smaller system 
resembling (1.10), with the multiplicity of the zero eigenvalue of A reduced 
by one. Repeating, if necessary, we eventually reach a system like (1.6a) with 
a nonsingular A. We omit the details, for we know no examples of a formula 
that would make it interesting or useful to carry them out. 

1.3. The neighborhood of a smooth solution. The goal of this paper is to give 
conditions for convergence of iterations (1.9) and (1.9a), applied to compute 
smooth solutions in stiff differential equations. To describe the neighborhood 
of a smooth solution of a stiff problem, we need some concepts. 
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We use the maximum norm for vectors x = (x, ..., T E xN Ixi = 

maxl<i<N jXJ . The subordinate matrix norm will be written jBI, that is, IBI = 

maxx,40 lBxlllxl * 

Let y = y(t) be a solution of (1.5) on some interval To < t < T1 . With a 
constant T exceeding the maximum tolerable deviation of a numerical approx- 
imation, let U be the tubular domain [10] 

(1.15) U = {(t, y): Iy -y(t)l < T, To < t < T1}. 

The next two definitions are slightly modified from [29]. 

Definition 1.1. A matrix function A: U - CN is negative dominant in U if 
there is a constant p of moderate size such that for all (t, y) E U 

(1.16) 1ImAii <plReAiI, i= 1,2,..., N, 

and constants a > 0 and 3 with 0 < d < 1 such that for all (t, y) E U, 

N 

(1.17) Re Aii < -a, E jAijj < -(1 - 3)Re Aii, i = 1, 2 ... , N. 
j=1 
J5i 

A is called essentially negative dominant if in place of (1.16) and (1.17) 
the inequalities 

(1.1 6a) jImA1jj<pjReAjjj+c, i=1,2, ... , N , 
(1.17a) ReAii<c, i=1,2, ... , N. 

N .17b) (1-3)ReA11+c if ReA11< 0 
( b) 1AjI< c - Re A.. if Re Aii > 0 

jsi 

i = 1, 2, ..., N, hold with a constant c of moderate size. 

We designate quantities of moderate size to distinguish them from quantities 
like e 1 in ( 1.4) characterizing the stiffness of the problem, which are permitted 
to be arbitrarily large. 

Definition 1.2. A matrix function A: U - CN is slowly varying to order p 
in U if there are constants K1 , of moderate size such that for (t, y) E U 
and multi-indices v = (v0 l, V ..., UN) with IvI = v0 + VI + + vN - P 

D- '9o av1 avN 

(11) min (lAi l , 1) ID~ AIi < Kll, v 

ij=1,2,..., N, v =1,...,p. 

Here is the basic condition imposed on (1.5). 
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Assumption 1.1. The Jacobian J(t, y) = h(t, y) is essentially negative domi- 
nant and slowly varying to order 1 in U. 

This is not too restrictive, even for linear differential equations; see the cogent 
examples presented in [29]. Curtis [8] warns that this analysis seems to rest on 
a segregation of the eigenvalues of A into "stiff" and "nonstiff" groups, but 
this separation is not rigid: no gap is assumed to exist, and Kreiss explicitly 
disavows an assumption that the number of "large" eigenvalues is constant. The 
experience with large, sparse stiff problems reported in [8] is that permitting only 
diagonal elements to be used as pivots in computing matrix factorizations gives 
acceptable stability, and this tends to confirm the supposition that off-diagonal 
elements are not arbitrarily large relative to the diagonal. 

Singularly perturbed problems satisfy Assumption 1.1 in the neighborhood of 
a stable reduced solution; cf. [43]. In Van der Pol's equation (1.4) the Jacobian 

-L -1 2 J 

is essentially negative dominant if 1xI > (2 - a -cc)/(1 -d). Observe in 
Figure 1 that the segments of the cubic in 1 < JxJ < X are the approaches to 
the "jumps" at the knees of the cubic; in those intervals the smoothness of the 
solution deteriorates. The only nonzero term from (1. 18) in J is 

OilH 2x -1aJ1 2x 
O ax x2 - 

this too is of moderate size for Ix > 1 + c5, and grows without bound as either 
knee at x = ? 1 is approached. 

We also require smoothness of the solution of (1.5). 

Assumption 1.2. There exist an integer p > 1 and constants K2,j, j = 1, 2, ..., 

p + 1, of moderate size such that Idjy(t)/dtjl < K2 j for To < t < T1, 
j= 1 , 2 , . .. , p + 1 

It follows from Assumption 1.2 that there is a constant Ko depending only on 
T. K2,, and K2,2 such that any two points (t, y) E U, (u, z) E U, are con- 
nected by a broken line in U of length not greater than Ko max{ It- ul, Iy - zI }. 

A solution of (1.5) satisfying Assumption 1.2 will be called smooth. The ex- 
amples of ? 1.1 illustrate the occurrence of smooth solutions. For many systems 
satisfying Assumption 1.1 it may be shown that smooth solutions exist, and the 
constants K21j depend only on c, 5, a, p and the K1,, for IvI < j: see [29] 
for linear time-varying systems, [43, Chapter 6] for singularly perturbed sys- 
tems. In these cases, then, among others, Assumption 1.2 is not an additional 
restriction; it merely signifies an intention to study smooth solutions known to 
be present. If a different condition is imposed on f-we shall consider mono- 
tonicity, for example, later on-smooth solutions need not exist. The use of 
codes designed for stiff problems is questionable unless the solution is smooth 
sometime [42]. 
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1.4. Convergence of the iteration: the main theorems. To the assumptions of 
?1.3 on the differential equation and its solution we add a condition on the 
numerical method. Consider first a consistent linear multistep formula leading 
to (1.6) [22]: 

k 

Z [aiy(t - sih) - hbiy'(t - sih)] = 0(h2). 
i=O 

Take so = 0; the common fixed-stepsize situation is si = i. We make 

Assumption 1.3. a := bo/ao > 0. 

For smooth functions y, 

y(t) - ahy' (t) = E [_ (EL) y(t - sih) + (k-) y'(t - sil)] + 0(h2), 

2) so the sum of bracketed terms is y(t - ah) + 0(hl). Now y, in (1.6) is derived 
from this last expression by replacing y(t - sih) and y'(t - sih) by memorized 
approximations. This explains the condition in Theorem 1 below that y, should 
lie in a neighborhood of y(t - ah). A similar observation holds for other 
representations of multistep methods, with step size fixed or not. 

We write Ut = {y E R N I (t, y) E U} for the t-sections of the tube U 
containing the smooth solution. 

Finally, recall that a sequence y' in RN converges q-linearly to y* if for a 
constant C with 0 < C < 1 

lYm+1 _ Y*I < clym _ Y*I m = O. 1 2 

and C is called the rate of convergence [1 5, pp. 20-2 1]. 

Theorem 1. Let k be given with 0 < k < 1 . There exist positive constants Ho, 
40, qo, and neighborhoods V, B, W with 

y(t - ah) E V C Ut-,h, y(t)EBcUt, W cU, 

all of sizes depending only on k and the constants in Assumptions 1.1 and 1.2, 
such that if Vs E V, JO is J(to, yo) (or a difference approximation to it with step 
lengths less than 40) with (to, yo) E W, 0 < ll< Ho, lha/(hoao) - 11 < qo, and 

y E B is arbitrary, then the iteration (1.9) commencing with y0 generates a 
sequence in B converging q-linearly with rate not worse than k to a fixed point 
y* of (1.9), the unique solution of (1.6) in B. Moreover y* = y*(V) depends 
continuously on y, E V. 

It is important that the constants and the neighborhoods are of moderate 
size commensurate with the smoothness of the solution, but independent of the 
stiffness of the problem. This is moreover a "semilocal" convergence theorem: 
the existence of the solution y* is not assumed beforehand but instead is a 
consequence of the proof. 
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Consider next a Runge-Kutta formula (c, A, b). If the coefficient matrix A 
is lower triangular with all diagonal entries equal to a > 0, Theorem 1 applies 
to the equations ( 1.10) taken in succession. For general Runge-Kutta formulae 
we need a hypothesis. 

Assumption 1.3a. The spectrum of A is contained in the open right half-plane 
together with {0}. If A is not invertible, the formula is of special type 
(1.1 4a-c). 

In the statement of Theorem 2 we use the local solution z of (1.5) with 
initial condition z(t) = yn. We assume this solution exists and is smooth on 
an interval spanning the contemplated step, and write 

Z(t) := (z(t + hc) T, ... , z(t + hcq) T)T 

This is no restriction, for if transients are active in the local solution, the strategy 
described here should not be attempted. 

Theorem 2. Assume that the local solution z satisfies Assumption 1.2. Let k 
be given with 0 < k < 1. There are neighborhoods V, B, W with 

q 
e 0y, E Vc (UEt)q Z(t) e B c U(t+c h), (t, Yn) E W c U 

i= 1 

(if the formula is of special type, then e (y yn + ao hf (t , Yn) E V C Hi=1 Ut+ h) 
and positive constants Ho, 40, a, all of sizes depending only upon k and the 
constants in Assumptions 1.1-1.3a, such that if TP E V, JO is J(to, yo) (or 
a divided difference approximation to it with step lengths less than 40) with 

(to y0) E W, 0 < h < H0, Jh/ho - II < 'i, and Y0 E B is arbitrary, then 
the iteration (1.9a) commencing with Y0 generates a sequence in B converging 
q-linearly with rate at worst k to a fixed point Y* of (1.9a), the unique solution 
in B of (1.6a). The fixed point Y* = Y*(Tp) depends continuously on 'P. 

Again the step size h is restricted only by the smoothness of the local solu- 
tion, and not by the stiffness. 

1.5. Discussion. Previous studies of the solution of (1.6) or (1 .6a) fall roughly 
into two groups. Analysts in the first group, e.g., [35, 37-38], assume the exis- 
tence of a solution, and assume that the iteration is convergent, and study the 
effect of various economy-motivated compromises of Newton's method. This 
is reasonable because just this situation is encountered in practical codes. Our 
present work shows that their assumptions are actually consequences of the prob- 
lem structure and that of the numerical method, and our analysis refines and 
extends their insights for algorithm design; see ?4. 

The second group of studies has been mainly concerned with establishing 
existence and uniqueness of the solution of the equations (1.6a) arising from 
Runge-Kutta methods, without regard to how that solution is to be computed. 
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Often, a fairly severe condition such as algebraic stability is imposed on the 
formula; contrast this with Assumption 1.3a. 

At various phases in the analysis authors in both groups have assumed that 
J is similar to a diagonal matrix [35, 38, 14, ?5.2]. We do not make this 
assumption. 

In the analysis of Runge-Kutta methods it is often assumed that the differen- 
tial equation is monotone [6, 27, 32, 33, 30, 44], i.e., there is an inner product 
(I,*) on RN such that 

(y-Z, f(ty)-f(tz))<0. 

Alternatively, [5, 10, 12, 14, Chapter 5; 25, 17], the differential equation is 
assumed to satisfy a one-sided Lipschitz condition, 

(y-z, f(t,y)-f(tz))<v(y-z, y-z), 

with v < 0 (f monotone) or v > 0 and of moderate size. 
The drawbacks to the assumption that f is monotone have been explained 

with cogent examples [29]. Perfectly ordinary problems need not satisfy a one- 
sided Lipschitz condition, either: the Van der Pol equation (1.4) does not; or 
consider f (t, y) = Jy with J the negative dominant matrix 

[(-)-1 _0l] 0 < (5 < 1, 0 < E << 1. 

(Takey-z=(uu2)Twith u=rcos6, u2=rsin6 0,=tan l(1-)< 
74 ; then 

T 2 ( 2 i1sn2U 
(Y-Z) J(y-z)=r K-cos 0+ cosO J 

2~~~~cs2 

is not bounded above uniformly in r2 as E -* 0+.) Thus, the one-sided Lip- 
schitz condition is an unnecessary restriction. 

Nor is it necessary to impose conditions on f to guarantee unique existence 
of a solution of (1.6) or (1.6a) globally in y, whatever be h > 0. Even the 
backward Cauchy-Euler method can have multiple solutions for problems that 
are not pathological at all-see ?5 for a simple example. And step sizes used 
in practice are always constrained by the user's error tolerance [42]. Therefore, 
it suffices that numerical schemes be well defined locally, for a step size with 
respect to which the solution is smooth. We amplify this point by an example 
presently, and by another in ?5. 

Recall the care with which Dahlquist introduces the monotonicity condition 
[10]. Acknowledging that it is rarely valid in the whole space, he assumes only 
that it holds in a tube about a solution, of radius comparable to the maximum 
error tolerable in a numerical approximate solution. Global monotonicity of f 
is then imposed for mathematical convenience by altering f in the (uninterest- 
ing!) complement of the tube. 

Subsequent authors have not always been so explicit about the realism of 
their assumptions. But still problems remain. When existence and uniqueness 
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of solutions are established by appeal to topological principles, such as uniform 
monotonicity [10, 14, Chapter 5; 44, 27] or topological degree [17], it must 
still be shown that the solution lies in the "interesting" region and is not a 
mathematical phantom introduced by modifying f outside the tube. In [10] 
the results are justified a posteriori by error estimates. Later authors seldom 
address this difficulty at all. Finally, of course, these topological arguments say 
nothing about the convergence of practical algorithms such as (1.9), (1.9a). 

A result somewhat related to ours is [23, Lemma 5], where the Kantorovich 
Theorem is invoked to obtain solutions of (1.6a) via convergence of the unmod- 
ified Newton method. The differential equation is taken to be in the singular 
perturbation form 

(1. 19) dy/dt = f(y, z), edz/dt = g(y, z), 

and it is assumed that 

(1.20) ju(ag/az) < -1 in a neighborhood of the solution; 

,u denotes the logarithmic matrix norm with respect to some inner product [14, 
? 1.5]. Assumption 1.1 for the problem (1.19) requires 

(1.20a) [ag/Oy, ag/Oz] is negative dominant in U. 

For comparison with (1.20), (1.20a) implies 

(1.20b) ui.(ag/az) < -6a in U, 

,u. being the logarithmic matrix norm subordinate to the norm employed 
here [14, (1.5.9)]. If (1.20) is replaced by (1.20a), then [23, Lemma 5] is a 
special case of Theorem 2 here, and [23, Lemma 6] follows from Corollaries 
4.2, 4.3 and the remarks following them. 

We conclude this section with an example showing that solutions of dissipa- 
tive differential equations need not be smooth, cf. [29]. Our example is inspired 
by the fact that examples showing nonexistence of a solution in (1.6a) all have 
J varying strongly over the length of a step [14, Examples 5.2.11, 5.3.1, 5.8.1, 
and Theorems 5.8.3, 5.8.4]. But one should not attempt to traverse such an 
interval in a single step, for the solution of the differential equation need not 
be smooth on such a scale [29]. 

Consider the differential equation 

(1.21) E dy/dt =-a(t)y +E, -1 < t5 0 < E< 1, 

(1)a(t) = E + sin2cot, 0 < v < u< 1. 

This differential equation is monotone. Consider first co = r/2. Then after a 
possible initial layer at t = -1 the solution is approximately given by 

y(t) -V /a(t) 

exhibiting "spikes" of height 0(eV A) ? 1 and duration 0(eV/2) around t = 

0, 2, .... An algebraically stable and irreducible Runge-Kutta formula can be 
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used with arbitrary h > 0 to compute a "solution" to this problem [ 14, Corollary 
5.3.13], but the spikes will not be resolved unless h is small enough in their 
vicinity, so this fact confers no benefit. It could even be positively harmful if 
the error-estimating formula were likewise "stable". It has been suggested that 
the Gauss formulae be regarded as defective for just this reason [40]. 

Finally, if we take cl > 1 in (1.21) we move the spikes close together and 
the solution is never smooth. This shows that a monotone differential equation 
need have no smooth solution. 

2. THE JACOBIAN MATRIX 

In this section we determine bounds for matrix inverses and Lipschitz con- 
stants for matrix functions occurring in the analysis of the modified Newton 
method. 

Lemma 2.1. Suppose A is negative dominant with parameters p, a, 6. Then 
A is invertible and IA 11 < (da)y1 
Proof. Let 0 :$ x = (xl, ... , x )TE E N and let i be an index for which 
lxil = lxi. Then 

(2.1) lAxi > Aiixi + EAijxj > JAiixil - Ej AijA1x1 
is~i isii 

? (I ReAiil + (1 - a) ReAii) lxi = -d ReAiilxl, 
by (1.17). By the first part of (1.17), -d ReAii > da, and this completes the 
proof. 0 

We shall find (2.1) to be useful in the sequel. 

Lemma 2.2. Assume J is essentially negative dominant with parameters p, I, 
c, and let a = A3+yi be a complex number with fl > 0. Let 

(2.2) a: = lf/lal2 
then for any h > 0 such that h < Ho, 

(2.3) H0=H0(,5c, a):= f2 min{f, 1-3}, 

the matrix hJ - a- I is negative dominant with parameters I, a and 

(2.4) p,= p'(p, a) = p + 1 + 41yl/fl. 

Proof. To show the first part of (1.17) for hJ - a1I we have 
-1 2 

Re(hJii,-a )=h ReJii-f/lal <-a, 
by the definition of a if Re Jii < 0, and by the condition on h if Re Jii > 0. 
For (1.16): if ReJii >0, 

Im(hJii-a-a)i h ImJii+ hc(p+ 1)a+ 

IRe(hJii - aI fl h aei-| 
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by (1.16a), (1.17a), the assumptions on a and h, and (2.2); if ReJ, < 0, 

|h Im Jii + A|2 PI Re hJiil + hc + Y1 2 pA + or + 
111 

/ 

h ImJ~la -~ < lIaJ~Ih+ < max laI < p 
h ReJ11 -fl IRehJiil++ P A>o A+ - h Re. I I a i2 la 12 la 12 

by (1.16a), the assumption on h, and (2.2). Finally, we verify the row-sum 
conditions in (1.17). If Re J1j > 0 , 

ZIhJjjI < he - h Re Jij 
sii 

=- (1 - A) Re(hJ,, - a__ ) + (1 - d) Re hJij 

- ( -6 a)l1 + hc - Re hJij 

< - (1 - 6)Re(hiii - a- 

by (1.17b) and the assumption on h; and if Re Jj < 0 

E JhJijj < -(l - ()Re hJj + hc 
jisi 

as before. 0 

Lemma 2.3. Under the assumption of Lemma 2.2 there are constants k', k3 
depending only on 6, a such that 

1(I - haJ)-1 < k I(I - haJ)-lhaJI < k3. 
Proof. We have I-haJ = -a(hJ -cG1 I) . The last factor is negative dominant, 
so by Lemma 2.1 1(I - haJIJ) < (Ica I aY'. The second bound follows from 
(I - haJ)-'haJ = -I + (I - haJ)- '. 

Lemma 2.4. Let U be a tube in JR x RN surrounding a smooth curve, and let 
J: U - RNxN be a matrix function that is essentially negative dominant with 
parameters p, 6, c; and slowly varying to order 1 with constants K1, > < K1 
for all multi-indices Iv I < 1 . Let a be a complex number with positive real part. 
Let (t 0yo) E U and write JO for J(to yo). Let 0 < h < Ho, with Ho given 
by (2.3). There is a constant k4 depending only on a, c, 6, p, and K, such 
that for (t, y) E U, 

(2.5) II -(I-_ah~o) l (I-_ahJ(t, y)) I< k4maxflt - tO I l-yoll 
Proof. It suffices to prove the result when the line segment from (to0 yo) to 

(t, y) lies entirely in U. Let 

M() :=I - ahJ (t 0+ 6(t - to), yO + 0(y - yO)) , 0 < 0 < 1 , 

C(6) M- (O)M(O); 
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then 

(2.6) C() = I, C H(0) = MH(0)(MH)-I(0) 

The Hermitian conjugate MH satisfies the differential equation 

(2.7) dMH dM (MH)-i H (M d 
H 

MH. 
do= do (M) oy 

Since J is slowly varying, we have by (1. 18) and the proof of Lemma 2.1, 

(2.8) M 1(0) dO < const * max{Jt-tol, ly-Y01}, 

with a constant depending only on a, c, I, p, and K1. Now according 
to (2.6), CH(0) is the solution operator for the differential equation (2.7). 
Applying the elementary estimate for this operator that follows from (2.8) yields 

C(O) - C(l)I = II - (I - ahJo) l (I - ahJ(t, y)) 

< k4max{k-t0- , Iy-y0IJ} 

with a constant k4= k4 (a, c, (5, p, K1), and the proof is complete. 0 

Note the identity 

(2.9) I- (I- ahJ0)- (I- ahJ(t, y)) = (I - ahJo)' (ahJ(t, y) - ahJo). 

The estimate of Lemma 2.4, then, applies also to the matrix on the right side 
of (2.9), and exhibits k4 as a relative Lipschitz constant. The author of [36] 
assumes a relative Lipschitz condition equivalent to Lemma 2.4 but does not 
exploit it as we do here. Deuflhard and Heindl [16] showed that the relative 
Lipschitz condition occurs naturally in affine-invariant convergence theorems 
for Newton-like methods. Their approach could be used to give an alternative 
proof of Theorems 1 and 2. 

When an iteration matrix is retained through a change of step size or formula, 
we must account for the presence of distinct ah in the "numerator" and "de- 
nominator" matrices. In the notation of Lemma 2.4, with also 0 < ho < Ho(ao) a 
we compute 

I - (I - a0h0J0)1 (I - ahJ(t, y)) 

= (I - a0ho0JO) (ahJ(t, y) - a0hoJO) 

= (I - a0h0J0)1 [(ahJ(t, y) - ahJ0) + (ah - a0h0)JJ] . 

An application of Lemmas 2.4 and 2.1 now establishes the following estimate. 

Lemma 2.5. Under the conditions of Lemma 2.4 let also 0 < ho < Ho(ao). 
Then, with the constants of Lemmas 2.1 and 2.2, 

(2.10) II - (I - a0h0J0)1 (I - ahJ(t, y)) I 
< Iah/a0h0Ik4max{It - t015 xy -yol} + Jah/a0ho - 1Ik3. 
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The last compromise we need is the possible replacement of JO by a divided 
difference approximation. Of the many possibilities [15, ?4.2; 47], we discuss 
only first-order differences; the results are readily extended to other schemes. Let 
4 = (4l . ... 5N)T E RN be a vector of increments such that (to, Y0 + 1ej) E U 
for each j, and let the jth column of the Jacobian be approximated by 

(2.11) Jo, j:= 4j (ffto~yO+4jej)-f(to~yo))5 j= 1 .. N. 

We get the following replacement for (2.10). 

Lemma 2.6. Under the conditions of Lemma 2.4, with JO given by (2.11), we 
have that if 141 is sufficiently small, then I - aohoJo is invertible, and 

II - (I - aohoJo)' (I - ahJ(t, y)) 

= (I - a0ho0JO) (ahJ(t, y) - a0ho JO) 

(2.12) ? ( 1- _Nk4j>j (| ah k4max{ft-to0I Iy-yOI} 

ah 
- 1 k + 2Nk4j~j + ;;ho 

Proof. By Lemma 2.4, the function (I - aohoJ(to, yo))l J(to0 y) satisfies a 
Lipschitz condition at yo with respect to y, with Lipschitz constant k4. There- 
fore [15, Lemma 4.2.1], 

I (I - a0hoJ(to y0o)) [aohof(to y o + 1jej) - aohof (to yo) 

(2.13) - aohoJ(t0, Yo )1jej]l 
< 1k , j= 1, 2, ...N. 

Substituting (2.1 1) into (2.13) and dividing through by 4j gives 

(I- a h0J(t0 y0)) l a0ho (JO - J(t0, y0)) e I < ?k4kjy, j =1,2 ... N. 

Hence, for the matrix norm we have 

(2.14) II - (I - aohoJ(to y o)1 (I - aoho0J0) < 2k4j1j 

It follows from the Neumann Lemma [15, Theorem 3.1.4; 34, 2.3.1] that 
(I - aohoJ(to, yo)) l (I - aohoJo) is invertible (and thus so is (I - aohoJo)) 
if 2 Nk4 < 1, and then 

(2.15) (I - a hoJo)0 (I - aohoJ(to y yo)) < (1 - 2 Nk 
The estimate (2.12) now follows from a computation: 

I - (I - aohoJo)1 (I - ahJ(t, y)) 

= (I - aohoJo)0 (ahJ(t, y) - aohoJo) 
= (I - aohoJo)0 (I - aohoJ(to yo)) 

(I - aohoJ(t0, yo)) 
1 [ah (J(t, y) - J(to0 yo)) + (ah - aoho)J(to yo) 

+ aoh0 (J(to yo) - JO)] 
Use Lemma 2.3 together with (2.14) and (2.15) here to complete the proof. a 
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For the remainder of the paper, JO denotes a matrix which can be either 
J(to, Y0) or its divided difference approximation (2.11), as in the statements of 
Theorems 1 and 2. The estimate (2.12) always holds, for if J0 is the analytical 
Jacobian, we take 4 = 0 in (2.12), reducing it to (2.10). 

The last condition we need for the proof of Theorems 1 and 2 is Lipschitz 
continuity for (t, y) E U of the matrix function (I - aohhoJO) ahJ(t , y) . It 
follows from Lemma 2.4 that this function satisfies a Lipschitz condition at 
(to yo) . Here is the more general estimate that we require. 

Lemma 2.7. Under the conditions of Lemma 2.4 the matrix function 

(I - a0h0J0o) ahJ(t, y) 

is Lipschitz continuous in (t, y) E U with a Lipschitz constant k1 depending 
only on ao, c, 3, p, K1, 1j1, diam U, and Iah/a0ho0. 
Proof. Let (t, y), (U, z) E U. Then 

(I - aohoJ07)- (ahJ(t, y) - ahJ(u, z)) 

=(I - aOohoJo) (I - aohoJ(to yo)) 

(I - 
a0hoJ(to yo))' (I - 

aohoJ(t, -v)) 
(I - a h J(t , y))1 (ahJ(t, y) - oahJ(u, z)). 

Apply Lemmas 2.4 and 2.2 to estimate the matrix norm of the product by 

(1 - Nk4j11)j' (1 + k4 diam U) * Iah/aoholk4 max{tt - ul, ly - zI} 

- kj (a0, c, A, p, K1,t1, diam U, Jah/a hol) max{It - ul, Iy - z1}. ? 

For the proof of Theorem 2 we need estimates analogous to those of Lem- 
mas 2.3-2.7 for the matrix (1.8a) and the Jacobian of (1.7a). The proofs are 
analogous, too, once the basic idea is understood. 

Lemma 2.8. Let J be an essentially negative dominant matrix, and A a Runge- 
Kutta matrix all of whose eigenvalues have positive real part. Denote these eigen- 
values by {a = + iyj: j = 1, ...,q}; let 

(2.16) a:= min flj/la12, H0= (a/c)min{1,4(l -3)}. 

If 0 < h < Ho, then there is a constant K3 depending only on c, 3, and A 
such that I('qN - A 0 h J)- 1 1 < K3 . 

Proof. Let Q be a unitary matrix such that QH AQ = R is upper triangular. 
Then 

Iq X IN A o hJ = (Q 0 IN)(Iq '9 IN-R X hJ)(QH IN), 
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and the center factor on the right side is block upper triangular. The diagonal 
blocks are IN - ajhJ, j = 1, ... , q, and are invertible by Lemma 2.2 and 
(2.16). The result follows by back substitution and Lemma 2.3. 0 

Lemma 2.9. Under the assumptions of Lemmas 2.6 and 2.8, let Y = 
( *T YT)T with y1 -y(tn + hcj)I < T, j = 1, 2,..., q . Recall the defi- 
nition (1.12) of F(Y), and write DYF for the Jacobian of F with respect to 
Y. If 0 < h < H0, Ho given by (2.16), then there is a constant K4 depending 
only on c, 6, A and Ki such that 

I'qN - ('qN- A ? h0J0)1 (qN -((A I)hDyF(Y))I 

(2.17) < (1 - K41I1)" {(h/ho) [K4 max{max Itn + hcj - tol, 1jy - yol} + 1V1] 

+Ih/ho- 1I(K3+ 1)}. 

Proof. A brief computation gives 

IqN - ('qN- A 0 h0J0o 1 (JqN -(A 0 I)hDyF(Y)) 

- (qN- A 0 hJ0) 1(A 0 I)(hDYF(Y) - Iq ? h0Jo) 

- (qN- A 0 h0J0) I(A ?I) [h(DyF(Y)-I -1 J(to y yo)) 
+I X h(J(t0, yO) - JO) + (h - ho)I C) JO] 5 

and the proof follows by triangularization of A and application of Lemmas 
2.4-2.6 to estimate the terms in the square bracket. 0 

The same technique proves the following analogue of Lemma 2.7. 

Lemma 2.10. Under the conditions of Lemmas 2.7, 2.8 and 2.9, the matrix 
function ('qN - A 0 hOJo)1hDyF(Y) is Lipschitz continuous in Y with a Lip- 
schitz constant K4 = K4(c , a p, K1, A, 141, diam U. h/ho). 

3. CONVERGENCE OF THE ITERATION 

We use the contraction mapping theorem in the following form. 

Theorem 3.1 [18, 10. 1.1]. Let B = {y: Ily -xII < r} be an open ball in a Banach 
space X. Let V be an open set in X and let Ao: V x B -* X be a continuous 
function satisfying 

(3.1) IIo(v, .y) - o(v , z)II < kIly - zII 

for all v E V, y, z E B, with a constant k, 0 < k < 1, and 

(3.2) Io(v, x) - xlI < (1 - k)r for any v E V. 

Then there exists a unique mapping g of V into B such that 

g(v) = (o(v, g(v)) 



690 ROGER ALEXANDER 

for any v E V, and g is continuous in V. Indeed, for any v E V the prescrip- 
tion yo E B arbitrary, 

ym+l = p9(v, y ), m = O 1, 2, ..., 

yields a sequence satisfying ym E B for every m; lim Oym = y* exists and 
does not depend on y0; g is defined by g(v) = y*. 

Theorem 1 is actually the special case q = 1, e t)yn = Vt/ A = a, c= a of 

Theorem 2, so we do not present a separate proof. 

Proof of Theorem 2. We show that any desired q-linear convergence rate 0 < 
k < 1 can be achieved. We recall constants Ho, K3 of Lemma 2.8, K4 of 
Lemma 2.9, K' of Lemma 2.10. 

Let 0 < q < 1, 0 < C1 < , 0 < o < K4, C2 > 0 be any constants 
satisfying 

(3.3) K4Ci + (1 - KA4) {(1+ q1)K4(C2 + do) + q1(K3 + 1)} < kim 

Define the "internal order" po = max{p: Ac -c'/j, 1< < p} if this set 
is nonempty, po = 0 otherwise. Ordinarily, po > 1, but this is not necessary 
for convergence [7]; [48] gives examples of formulae with po = 0. Then choose 
O<h <Ho O< C3 < T small enough that 

(3.4) K3(C3 + K2 ,p+lhp?+l) < (1 - k)Cl. 

Assume that JO in (1.8a) is J(t0, Yo) , with (t0, Yo) E U, or a divided difference 
approximation (2.11) to it with step lengths less than 11 . Let z(t) be the local 
solution of (1.5) satisfying z(tn) = yn, and assume that 

(3.5) max max{Itn + hcj - tol, Iz(tn + hcj) - yol} < C2, 
1 <j<q 

(3.6) < do 

(3.7) <h_1 

Let 

(3.8a) V:={IE q T-e &Ynl < C3I 

if A is invertible, 

(3.8b) V:=fTE qN: I-(e &Yn + ao '& hf(t, YnM < C3I 

if the Runge-Kutta formula is of special type. Using the local solution z(t), 
define the vector Z(t) = (z(t + hci )T, ... , z(t + hcq)T)T and let 

(3.9) B:= {Y E EqN: y - Z(t)l < C1}. 

We show that the prescription (1.9a) defines a function Io: V x B --* RqN by 
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in which (1.7a) defines G, and that fo satisfies the conditions (3.1) and (3.2) 
of Theorem 3.1. 

Now (3.10) is well defined, for Lemma 2.8 and the choice of h show that 
M is invertible. Moreover, if ' = (V#T ... y ETlT E V, then (t, V') E U (resp. 

T T T 
(t+haio, Vi) E U ) by the choice of C3 and h; and if Y = (yl . .y) EB. 

then (t + hei, yd) E U by the choice of C1. Thus the estimates of Lemmas 
2.9-2.10 apply. 

Let Y. Z E B. Then 

(vP, Y) - o(vP, Z) 

(3.11) = M1G(T, Y) - M1G(T, Z) - M-lGy(T, Z(t))(Y - Z) 

+ (I + M-lGy(T, Z(t)))(Y - Z). 

By Lemma 2.10, M 1G(T, Y) has a Lipschitz continuous partial derivative 
with respect to Y; therefore, by a mean value theorem [15, Lemma 4.1.15], 

(3.12) IM1 G(TP, Y) - M1G(TP, Z) - M1Gy(T, Z(t))(Y - Z)I 
< 1K'(IY - Z(t)l + IZ - Z(t)I)IY - ZI ' K4CJIY - Z1. 

By Lemma 2.9, 

II + M 'Gy(T, Z(t))l 

(3.13) = IqN 
- 

('qN- A ?& hoJo)Y ('qN -(A 0 IN) hFy(Z(t))) 

< ( 1 - K440) { (l1 + ql)K4(C2 + 40) + q(l1 + KO) 

from (2.17), using (3.5), (3.6), (3.7). Inserting (3.12) and (3.13) into (3.1 1) and 
using (3.3) proves (3.1). To prove (3.2), consider for invertible A 

ko(aP, Z(t)) - Z(t)l = {Mf G(T, Z(t))I 
< IM lAIdT- e X yn + e Xoyn + (A X9 I)hF(Z(t)) -Z(t)l 

< K3 C3+ max z(t) + h E aijz'(t + he1) - z(t + he)) 

< K3(C3 + K2, po+IhP ) < (1 - k)C1 

by (3.4), (3.8a), Lemma 2.8, and Assumption 1.2 for the local solution z(t). 
The treatment of a formula of special type is similar, proceeding from (3.8b) 
instead of (3.8a). This shows (3.2) and completes the proof of Theorem 2. 0 

There is no difficulty in extending the theorem to cover general linear meth- 
ods. One simply proves the analogues of Lemmas 2.8-2.10. No new ideas are 
required to establish (3.1) and (3.2). 

4. ALGORITHMIC CONSEQUENCES 

Theorems 1 and 2 provide the theoretical support for the practice in codes for 
stiff problems of retaining the iteration matrix for many steps and even through 
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changes of step size and formula. Our analysis shows that the achievement of 
a desired contraction rate k depends, according to (3.3), upon four quantities 
subject to control by the code: C1 , the accuracy of the predicted solution; C2, 
the age of the Jacobian; tI, the relative deviation of the current step size from 
that incorporated in the iteration matrix; and 40, the size of increments if the 
Jacobian has been approximated by divided differences. For the iteration to be 
contracting to a solution we require the invariance of a certain ball, and this 
is achievable, according to (3.4), if the step size h is small enough, since for 
solving the original equation (1.6) or (1 .6a) we may take C3 = 0. The possibility 
of taking C3 > 0 arises in error analysis, which we consider presently. 

It is the task of the error-control mechanism in the code to propose a step 
size that is "on scale" for the local solution. This means that when the order of 
accuracy of the formula is p, the quantity K2 ,~hP+ I is roughly comparable 
to the user's error tolerance. Consequently, it is reasonable to expect (3.4) to 
hold with the step size being attempted. This means that algorithmic choices 
in the conduct of the iteration are made solely for the purpose of achieving the 
desired contraction rate. We should also mention that various relaxation [2] 
and acceleration [4] schemes have been tried; see the survey [46]. We do not 
attempt to analyze such schemes here. 

Of the four quantities Cl, C2, tI, 0 affecting the contraction rate, we need 
not consider 40 and Cl here. The optimal choice of 4 depends on f and 
properties of floating-point arithmetic independent of the application to solving 
differential equations [9; 15, ?4.2]. C1 , the accuracy of the predicted solution, 
is also not a matter of concern for reasons already mentioned: if the local 
solution is smooth and the step size is on scale, then information from the 
solution history enables the code to make an accurate prediction. 

We can get a rough idea of the convergence rate's sensitivity to the quantities 
C2 and q by inspecting the coefficients multiplying them in (3.3). The coeffi- 
cient of C2 is a (relative) Lipschitz constant for J. The presumption that this 
constant is small is expressed by statements in the literature that the Jacobian 
is expected to be "nearly constant" in the neighborhood of a smooth solution 
[39, 42]; in the smooth part of the Van der Pol (1.4) limit cycle the Lipschitz 
constant is of order 1, however. Remember that C2 itself, the "age" of the 
Jacobian, is ordinarily a not excessively large multiple of h. The coefficient of 
tI, on the other hand, surely exceeds 1; this implies that q must be taken small 
relative to the desired convergence rate. 

There are three remedies available in case of unsatisfactorily slow conver- 
gence. In order of increasing severity these are: having saved J0, compute 
a new decomposition with the current h (making q = 0 ); form a new Jaco- 
bian at, say, (tno Yn), and compute its decomposition (this makes q = 0 and 
C2 = h maxi Ic I ); or, finally, abandon the step and retry with a new smaller 
h. We note that when Enright's device of reducing (ha)- I - J to Hessen- 
berg form by a similarity transformation is in use, then q = 0 always, and 
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the choice is between the latter alternatives [19, 40]. This remaining choice of 
remedies has been studied by Shampine. In [37] he says, "We suggest that a 
new J be formed at every convergence failure with J out of date. There is 
no reason to think the step size unsatisfactory, so we suggest trying it again." 
Two years later, discussing a somewhat different setup, he reaches a contrary 
conclusion [41]: "We argue that in conjunction with other aspects of our algo- 
rithm, reduction of the step size is always the appropriate response to failure of 
convergence." We shall see that the present analysis lends support to the second 
decision in some circumstances, but not always. 

Let us consider first the situation when the rate of contraction is very slow, 
or the iteration is even diverging. Should we attempt to restore convergence by 
updating J, or do we infer that some fundamental assumption-smoothness 
of the solution, accuracy of the formula, slow variation of J, appropriateness 
of h-is invalid, so that a reduction in h is called for? Let us suppose for a 
moment that all the basic assumptions remain valid. On the last preceding step, 
(3.3) was satisfied. The only difference when we undertake the current step is 
that C2 changes by 0(h)-the Jacobian is one step older. It is not plausible 
that this single small change would turn a rapidly converging iteration into a 
slowly converging one; hence one or more of the basic assumptions is failing, 
and the appropriate decision is to reduce the step size. 

The matter is less clear if the rate of convergence is only marginally unsat- 
isfactory. We are not impelled, then, to give up any of the basic assumptions, 
for it is likely that the aging of J0 is responsible for the deterioration of con- 
vergence, and that an updated J will make it rapid again. Shampine insists on 
reducing h here too: "There is no justification ... for going to the expense of 
forming a new Jacobian when a relatively small change of stepsize will suffice." 
The case is weaker here, however: in the situation we are describing, if we do 
not update J this time, we could be confronted with the same problem on 
the next step. This means that the decision comes down to proceeding with a 
smaller than optimal step size to avoid the expense of forming a new J, and 
this is a code- and perhaps even problem-dependent balance. 

We turn now to error estimates. This has been studied heretofore using the 
theory of BSI stability [14, ?5.4-5.10; 12, 13, 21, 26]. In our framework weaker 
hypotheses yield stronger results by elementary means. The conclusion of (3.2) 
is that there is a unique mapping g: V -* B such that 

G(TP, g(T)) = 0 

for all P E V, and that g is continuous. More is true. Writing Y* for g(TP), 
we have 

DY G(TP, Y*) = IqN - (A 0 I)hDyF (Y*). 

Under the hypotheses of Theorem 2 this matrix is nonsingular, so the implicit 
function theorem [18, 10.2.2] applies. 
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Corollary 4.1. Under the conditions of Theorem 2 the mapping vP Y* = g(T) 
is continuously differentiable, and 

Dg(T) = [qN -(A 0 I)hDyF(g(T))] 1 

Consider now an approximate solution Ym E B of (1.6a) with residual rm. 
Then by (1.7a), 

rm = v + (A ? I)hF(Ym) - Ym 
implies 

G(-rm , Ym) = 0. 
If Irml < C3 in Theorem 2, then Ym = g(T - rm), and the Mean Value 
Theorem of differential calculus [18, 8.5.4], together with Lemma 2.8, yield an 
error bound. 

Corollary 4.2. If G(W - rm, Ym) = 0 with Ym E B, Irm < C3, then 

jYm -Y*1 <K31rml. 

K3 is a constant of moderate size independent of stiffness. Shampine [38] 
obtains a similar bound, assuming that J is similar to a diagonal matrix, and 
that the matrix effecting the similarity is well conditioned. Curtis [8] reports, 
however, that an eigenbasis can be quite skew. Corollary 4.2 shows that a small 
residual always guarantees a small error; this is the theoretical support for the 
policy advocated in [38], that in the iterations (1.9), (1 .9a) the smallness of the 
residual should be the stopping criterion. We can say more. By Lemma 2.10, 
the derivative Dg is Lipschitz continuous. By another mean value theorem [18, 
8.6.2; 15, Lemma 4.1.12], the error is well approximated by the linearization. 

Corollary 4.3. There is a constant of moderate size such that 

-g( i) - g(T) -Dg()(-rm)l 

= Im Y* -[IqN - (A ? I)hDyF(Y*)]firmI < const Irm12. 

Now specialize to the case q = 1 which includes multistep methods. By 
Corollary 4.3, 

yi n y* [I- hJ(y*)]- rm + O(Irm12) 
_ -I(hJ -_ I)-'rm + O(Irm12 

Now hJ* - aJ 1I is negative dominant. Consider the vector 

y n= (I- ahJ*)-lrm = yi n y* + O(jrm 
2 

Let i be the index of the maximum component of 5ymi. Then by (2.1), 

M~ ~~~ a- 
I 

ram), i Oy I< 
5(Re hi,*, ) 

and yym - y*1 differs from this quantity by O(rmI2) . It follows that if stiff 
components (corresponding to ReJi*i < < -1 ) predominate in the error, then 
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the error is much smaller than the residual, while if smooth components (cor- 
responding to Ih Re J.* < 1 ) predominate, the error and the residual are of 
comparable magnitude. Analogous results hold for Runge-Kutta methods. 

A more precise estimate may be formulated in the case of singular perturba- 
tion problems, cf. [23, Lemma 6]. Then J has the block structure 

, 
, J, 1 

[86 J21 8 J22 ] 

and Assumption 1.1 means negative diagonal dominance in the rows multiplied 
by e1 . Let us write the solution of (1.6a) simply as Y in (1.12). Then by 
Corollary 4.3, 

Ym -Y = (Iq C IN-A(A I)h diag[J., Jq])rm + O(Irm 12) 

with Ji = J(tn + hci i ,i), i = 1, 2, ... , q . Introduce c5Ym for the first term 
on the right, and permute variables according to the block structure of J to get 

6i [s ]-ha11 Ali2] Ym =r7 E (im 0 In2 ] j[ J21,i e J22, j - 

into the form 

I + 0(h) 0(h) 5 Ym(1)] [r (1) 
/(h/e)0(1) I-(h/e)(A?&I)diag[J22,il]=1,...,q c Ym (2). r (2) 

Thus, by negative dominance, 

16Ym(1)I < const(Irm(1)I + hrm (2)1), 

16Ym(2)1 < const(Irm(1)l + (e/h)jrm(2)j). 

Finally, for evaluating (1.11) we consider the accuracy of approximation 
to K* = hF(Y*) = (A 1 0 I)(Y* - uT). In order not to magnify errors in 
components of Ymi, as would occur if they were passed through If, we take 

(4.1) K m := (A l)I)(Ym-A). 

From Corollary 4.2 we have an error estimate. 

Corollary 4.4. There holds jKm - K*I < K3 A II Irml. 

The solution is advanced by * = yn + (bT 0 I)K* . If we accept Ym and 
define stage derivatives by (4.1), then we advance the solution by 

?= Y + (b 0 I)(A-1 0 I)(Ym - T) 

T e ei ef Cola I)(Ym -4.)4 

The error estimate follows from Corollary 4.4. 
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Corollary 4.5. We have lyn+l -y,+v I < lbTA- 'K31rml. 

We note that the bound IbTA l | rather than IbTi IA1 
- 

l, which may be con- 
siderably larger, can be achieved in practice by ordering the computations as- 
tutely [7]. 

5. THE KNEE PROBLEM REVISITED 

We conclude with an example to highlight some requirements for a robust 
algorithm. Consider the "Knee Problem" [ 1] 

(5.1) edt=(l t-y)y=f(ty), O<e?1, 
y(O)= 1. 

The reduced problem (e = 0) corresponding to this singular perturbation 
problem has two solution branches y = 1 - t and y = 0. Since af/Oy = 
1 - t - 2y, the first branch is stable for 0 < t < 1, and the second branch is 
stable for 1 < t. The solution of (5.1) thus follows the branch y = 1 - t for 
0 < t < 1 - O(e 1/2) and is well approximated on this interval by the asymptotic 
solution 

(5.2) Ya(t; e) := 1 - t + 1 e 

(We ignore the boundary layer correction in y near t = 0.) In the interval 

It- 11 = 0(e1/2), a transition occurs, and then y'(t) = 0(e) for t > 1 + 0(e l2 

see Figure 2. 

1.00 

0.50 - 

0.00 ......................... 

-0 o .0 

-1.00 I I 
0.00 0.50 1.00 1.50 2.00 

FIGURE 2 
The Knee Problem 
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Consider now the approximate solution of (5.1) by the backward Cauchy- 
Euler method, with 0 < tv < 1: 

(5 3) YV+1 = Yv + h8e f(tv + hV, Yv+i) 

= Yv + hVe1 (1 - tv - hv - Yv+i)Yv+i' 

This quadratic equation for yv+1 has, naturally, two solutions-solutions of the 
implicit equations are seldom globally unique when f is nonlinear-provided 

YV > -(hv(tv+hv-1)+&)2l(4hve). When tv+hv < 1-0(e /2) and yv --t>, 
these solutions have the form 

(54) Y*+1 I - t - h + ?(&) 
Yv 

C 
2 

(5.5) Yv+l v h v + 0(e). 

They are close to the (for t < 1 !) stable and unstable solution branches, respec- 
tively, of the reduced problem. Dual solutions cause no difficulty away from 
t = 1. The iteration 

(5.6) m+1 =M + (1- h0J)1 G(Yv ) Y21) 
with 

(5.7) G(yV v y) = Yv + hve (1 - tv - hv y)y - y 

and 

(5.8) J= l ( 
= -1 

is rapidly convergent to the "correct" solution (5.4) of (5.3) from a reasonable 
initial guess, say 

(5.9) YV+1 = Yv + hve 1f(tv M Yv) 

whenever Yv -1 - tv M 

We now consider the neighborhood of t = 1. Here the theory of ?3 no 
longer justifies the procedure (5.6-5.9), and there is danger of finding the wrong 
solution. For example, if tv + 2 hv = 1 -that is, t = 1 falls exactly in the middle 

of the step-and if Yv lies on the asymptotic approximation (5.2), then yv+l 
in (5.9) is exactly the root (5.4) of (5.3). Now, however, this is the wrong root; 
(5.5) is the stable root for tv+l > 1 , just as in the differential equation. 

Suppose now that we are not so unlucky as to predict the wrong root exactly. 
Take (hv = h) 

t>= 1 2h<1, t<+1 =-1+1h> 1, 

= Ya(tv, e) from (5.2), and Yv+l given by (5.9), 

so that 

(5.10) 0 - - 3 e 
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Then y#+1 (5.5) (the "correct" root) is an attracting fixed point for (5.6) while 

y>+1 (5.4) (the "spurious" root) is repelling. Note that yo+1 is closer to y* 
than to y#+1 for, say h = 1/10, e = 1/100. 

Upon performing the iteration (5.6) we find 

G(yLv 0Y1) = 3h + 27 e = 0(h), 

1 0 3 4 + 9/h2(2 
YV+ i YV+ i I 6 l +e/h (8) 

If 0 < e << h this is small enough to cause 1 to be accepted by a test based 

on Jym+1 - y +1 l, even though the iteration is diverging: 

G(yv, yI+i) = 3h + Ih2+ 27 15Bh _ h3) e/h + O(e2/h ) 

0 
> G(yv 5Yv+l). 

Updating the Jacobian in (5.8) to J = af (tv, yv) strengthens the respective 

attracting and repelling properties of y#+ and yv+1 without changing these 
observations in principle. 

This example with a smooth differential equation reinforces the arguments 
of [37], which discusses an example with similar features: for it is common in 
problems of this type that a solution makes a fairly abrupt transition from one 
smooth manifold to another. 

This has a clear implication for software. In a code for solving stiff problems 
by an implicit formula, one makes hypotheses about the smoothness of the 
solution and the vector field, in order to carry out expeditiously the task of 
solving the implicit equations to advance the step. Without a robust algorithm, 
however, the code can be deceived when these hypotheses turn out not to be 
correct. The experiment with the Knee Problem described in [1 1] apparently 
deceived the IMSL code in just this way. 

Whether to use the residual or the difference of successive iterates in deciding 
to terminate the iteration has been discussed elsewhere [24]. These authors argue 
that the effect of a test based on residuals is to increase the number of iterations 
without substantially affecting either the step size history or the accuracy of the 
computed solution. The numerical tests supporting this conclusion, however, 
employ from the test set [20] only problems having a globally asymptotically 
stable rest point. Under these conditions an acceptance test based on closeness 
of successive iterates ordinarily yields an acceptable solution, for reasons already 
discussed in [38]. Thus these tests demonstrate nothing new, and they do not 
address the problem of robustness raised in [20, 37, 11]. 

Our analysis confirms the argument of [38] regarding the use of the residual as 
a stopping criterion for the modified Newton method. To overcome the relative 
lack of robustness of a test based on proximity of successive iterates, it appears 
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that one must insist that at least two iterations be taken on every step and that 
their outcome should confirm-or rather, not refute-the hypothesis that the 
iteration is contracting at the required rate, cf. [38]. Even this is problematic 
if the first two iterates differ essentially by roundoff, as was already noticed in 
[38]. 
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